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The effect of the viscosity ratio (M =puj /u;) in changing the nature of viscous fingering was studied
using a simple, physical model of miscible, dispersionless, two-phase, linear flow in model two-
dimensional porous media. For all viscosity ratios, the initial flows had an unstable, fractal character
which crossed over to stable, compact flow on a time (or length) scale which increased with the viscosity
ratio. An empirical scaling of the data enables an asymptotic characterization of both this time scale
Tsz’I, where ¢, =0.1710.03, as well as the front velocity v ~M" where €, =0.07£0.02. A compar-
ison with identical simulations of radial flow indicates that the same characteristic length scale applies in
both linear and radial geometries l:zMé’ where ¢, =0.241+0.06, while the time scales differ because of
the different relations between time and size in the two geometries. ‘

PACS number(s): 82.20.Wt, 47.55.Mh, 47.10.+¢g, 68.10.—m

I. INTRODUCTION

Many recent papers have addressed various aspects of
fractal growth phenomena [1-10], including the fractal
nature of the viscous fingering that arises when an inject-
ed fluid with low viscosity (p;) is used to displace a “de-
fending” fluid with larger viscosity (up). A central con-
cern is the determination of what factors affect the nature
of this growth, what factors change the value of the frac-
tal dimension, and what factors change the growth from
fractal to compact. As with any real problem, there are a
number of possibly relevant parameters for changing the
nature of two-phase flow in porous media. Earlier work
[4,11] showed that the amount of fingering increased with
the viscosity ratio to fractal growth at infinite viscosity
ratio, whereas the growth was obviously compact for
small viscosity ratios. Indeed, it has been shown that the
limit of infinite viscosity ratio (M=up/u;— o) is
correctly described by diffusion-limited aggregation
(DLA), a process which is known to form fractal objects
with nonuniform densities [6,12].

Early work showed that increasing the amount of dis-
order in the porous medium changes the nature of the
growth from dendritic to random [2]. Later, for immisci-
ble fluids it was shown that increasing the wetting by the
invading fluid increases the width of the viscous fingers,
with a transition to compact growth occurring at a “criti-
cal” contact angle [5]. Modified DLA simulations have
shown that a finite capillary number induces a crossover
from invasion percolationlike flow to DLA-like flow [10].
Lack of isotropy in the porous medium yields visibly an-
isotropic patterns and effects a small change in the fractal
dimension from D,=1.63 for two-dimensional, isotropic
systems to D,~1.7 for simulations on a square lattice
[9,12]. It is the transition for miscible fluids from DLA-
like fractal growth to compact growth with decreasing
viscosity ratio (M =u, /u;) that we have attempted to
characterize. In order to delineate clearly the effect of
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the viscosity ratio, we have assumed zero surface tension
(consistent with miscible fluids) and negligible dispersion
(mixing) of these fluids to maintain a sharp interface.

These questions are especially relevant to oil recovery
and reservoir simulation because all traditional field
simulations of oil reservoirs are based upon a Darcy’s-law
treatment using saturation-dependent relative permeabili-
ties [13]. As used in engineering applications, Darcy’s
law involves a mean-field-like averaging of the micro-
scopic equations suppressing fluctuations which are
known to modify asymptotic behavior in other applica-
tions [14]. Indeed, the results of asymptotic fractal flow
are contrary to the basic engineering assumption of
saturation-dependent fractional flows and relative per-
meabilities [15]. Thus, it is crucial to determine whether
or not the real, finite-viscosity-ratio flow is fractal or
compact. Experiments and simulations have shown that
the viscosity ratio does effect a crossover from fractal
flow at large viscosity ratios to compact flow at small
viscosity ratios [4,11]. However, these studies did not at-
tempt to characterize or even locate the crossover. In an
earlier paper ([16], hereafter referred to as I), we per-
formed deterministic simulations of radial flow which lo-
cated and crudely characterized the crossover. In this
longer paper, we will study linear flow which provides
improved statistics, allowing us to characterize more con-
vincingly the crossover for both flow geometries, which
will allow characterization of the fractional flows [15].

It is useful to review some of the characteristics of frac-
tals. The classic signature of a fractal object is a non-
Euclidean relationship between mass and size. For a
“circular” fractal object in d dimensions, the mass is pro-
portional to R Df, where D, < d (e.g., for two-dimensional
DLA, D;=~1.70£0.06) [12]. For linear flow in the x
direction, the mass of the injected fluid, which is propor-
tional to the time [17], varies as the D, —1 power of the
linear size as long as the average linear size x is much less
than the width of the system. Therefore, mass is approxi-
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mately equal to x Pr= 1; for a DLA-like fractal,
(x)=th*, (1

where time ¢ has replaced the mass and we have used the
value of the fractal dimension for on-lattice DLA [6]. In
the formation of fractals, the patterns initially have many
small fingers, some of which grow faster than others. The
longer fingers grow more rapidly than the short fingers,
so that as the object grows, it coarsens (i.e., it has fewer
and fewer growing fingers). Therefore, at an advanced
stage of growth the pattern has many fingers on many
different size scales, giving a nonuniform density, provid-
ed that the system is wide enough. For a system of finite
width w, the pattern will eventually evolve to a stage
where there is only one growing finger, whose length is
comparable to the system width; at this stage the growth
will appear linear or stable (pseudostable) because all
growth occurs in the one dominant finger. A number of
excellent reviews discuss a wide variety of these fractal
growth phenomena including material deposition, dielec-
tric breakdown, and two-phase flow, the topic of this pa-
per [6,18,19].

In modeling miscible two-phase flow in porous media,
we have sought the most standard and most physically
rigorous model possible; a detailed discussion is presented
in Sec. II. Briefly, we used a standard square-lattice mod-
el of homogeneous two-dimensional porous media
[2,4,20] in which the pore bodies, at the sites of a square
lattice, all have unit volume but the cross-sectional area
of each pore throat is randomly chosen from a uniform
distribution; this distribution is known to give random,
fractal flow for infinite viscosity ratio [2]. For miscible
flow, there is zero interfacial tension so that the flow ve-
locity through any pore throat is proportional to pressure
drop across the throat as defined by Poiseuille’s law.
Furthermore, we assume zero dispersion, assuring a
well-defined interface in our model flows. Determining
the conductances (or transmissibilities) from Poiseuille’s
law, we then use a slight modification of the standard
Gauss-Seidel iteration of the discrete Laplace equation
until the residual is less than 107>, Knowing the pres-
sure drops across the throats and the conductances en-
able us to determine the flow rate for each throat. We
then use straightforward deterministic flow rules to ad-
vance the interface through a short time Az. The upper
bound on the residuals and the flow rules, to be described
shortly, were found to satisfy total fluid conservation to
within 0.5%, even after 1400 time steps. This procedure
has the advantage of not suppressing fractal flow [4];
indeed, earlier variants of this model were used to study
fractal flow [2,7]. As discussed in Sec. III, the large
viscosity ratio limit of this model does produce the ex-
pected DLA-like fractal flows.

In Sec. IV we address the question, “Is viscous finger-
ing fractal for finite viscosity ratios?” Using the model
discussed above and detailed in Sec. II, we study the
motion of the interface through the time dependence of
the first moment of the injected fluid, i.e., {x(¢)),,, for
the finite viscosity ratios M =3 to 300. For these viscosi-
ty ratios, and probably for all finite viscosity ratios, the
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simulations produce initial fractal flows obeying Eq. (1)
which become compact (or linear),

(x)y=v(M), 2)

on a characteristic time scale which increases with the
viscosity ratio. It is shown that the fractal to compact
‘“crossover” can be convincingly characterized by a
heuristic fractal scaling of our data for {x(t)),,, which
enables us to characterize the viscosity-ratio dependence
of the characteristic time (M) and the “front” velocity
v(M). It seems likely that our assumption of negligible
dispersion will be a worst-possible-case scenario for
fractal-to-compact crossover in miscible floods, because
dispersion would smooth the interface, thereby favoring
compact flow and accelerating any fractal-to-compact
Crossover.

In Sec. V, we compare these results for the linear flow
geometry with our earlier results for the radial flow
geometry [15]. We find that the characteristic size scale
associated with the fractal-to-compact crossover is
asymptotically the same for both geometries, while the
crossover times obey different power laws because of the
different relations between size and fractal mass (or time)
in the two geometries. These simulations for finite viscos-
ity ratio show initial fractal advance of the interface fol-
lowed by an overshoot and ‘“‘overdense” relaxation to
stable flow on a scale which could be characterized by an
asymptotic, power-law dependence upon the viscosity ra-
tio.

II. DESCRIPTION OF THE MODEL

In modeling two-dimensional porous media, we have
used a variant of a standard square-lattice representation
(2,4,8,20,21]. This N, XN, square-lattice model has pore
bodies, of unit volume, at the lattice sites r=(2m,2n) for
all integers m =1—N, and n=1—N,. These pore bo-
dies are connected by cylindrical throats of unit length, at
the vertical and  horizontal bond locations
r=(2m +1,2n) and (2m,2n +1), respectively. The ran-
domly chosen cross-sectional areas of these throats are
uniformly distributed in the interval O to 1. This broad
distribution assures that the growth will be chaotic rather
than dendritic [2]. Furthermore, the finite volume of the
throats allows for realistically smooth variations in the
conductance of a throat as it becomes invaded, which is
not the case in models where a zero-volume throat is ei-
ther occupied or unoccupied [2,21].

To ascertain the effects of a finite viscosity ratio, we as-
sume Poiseuille flow through a throat, neglecting the sur-
face tension effects of capillary pressure and wetting.
Poiseuille’s law relates the pressure drop (AP) across a
throat and the volume flow rate (q) through that throat,
e.g., for the throat at r=(2m +1,2n),

APy 11,20 =92m +1,20/ Tom +1,2n > 3)

PZm,Zn "sz +2,2n

_ [ BrXam 1,20 THD (1= X000 41,,)

2 9om +1,2n »
Crom+1,2n
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where T is the transmissibility (or conductance) of the
throat, x is the length (fraction of the unit length) of
throat invaded and 7 is the radius of this throat, and C is
a constant. Imposing volume conservation for our in-
compressible fluids requires that the net volume flow into
any pore body must be zero, e.g., for the pore body at
(2m,2n),

> 9omam+s=0, 4)
5.

where the sum is over all nearest-neighbor displacement
vectors, specifically, §=(1,0), (—1,0), (0,1), and (0, —1).
Using Poiseuille’s Law, Eq. (3) in Eq. (4), one finds a
discretized Laplace’s equation, which can be written in
the familiar form

Poman= 2, T(Zm,2n)+6P(2m,2n)+28/ 2 Tooman+s »
3 3

(5)

where we have chosen boundary conditions with a high
pressure at the inlet pore bodies at x =0 (P ,, =100);
zero pressure at the outlet edge (Pyy 42,2, =0), and

zero-flow conditions on the sides (T, ; =T5,, o5 +1 =0).
, 12N,

To find iterative solutions for the pressure field, we have
used a slight variant of the standard over-relaxed Gauss-
Seidel scheme such that the normalized residuals 72,

2
R=3 lz q(2m,2n)+8/ > Tiomam+s ’ ,
m,n & 8

fall below a confidence limit which we have normally
chosen to be 107 or 1075, These confidence limits plus
the flow rules described below satisfy overall fluid conser-
vation to within a fraction of a percent (i.e., we find
differences which are typically less than 0.5% when we
compare the total volume of invading fluid in the porous
medium up to breakthrough with the volume of displaced
fluid).

Having (i) defined the porous medium, (ii) determined
the conductances, (iii) solved iteratively for the initial
pressure field, and (iv) found the initial volume flows in
the pore throats, we can now advance the interface
through some short time interval Az. We have chosen a
At such that the interface advances one-half pore-body
volume (i.e., one-half unit) in that interface throat with
the maximum volume flow rate, i.e., g, At=1+. The
flow rules allow the interface to advance through throats
such that the flow is from a fully invaded pore body to-
wards a pore body which is not yet fully invaded. As
shown in Fig. 1(a), this advance can occur within the
pore throat, into the pore body, or through the pore body
into the adjacent outflow throats. These flow rules also
allow the interface to retreat locally through throats
where the flow is from a pore body which is not fully in-
vaded towards a pore body which is fully invaded (or was
fully invaded and is not yet completely defender-filled).
As shown in Fig. 1(b), this retreat can occur within the
pore throat, into a fully invaded pore body, or even
through a pore body into the outflow throats.

We then cycle this process by (i) finding the transmissi-
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FIG. 1. Flow rules: (a) The flow can cause the interface to ad-
vance through a volume AV =uAt within a pore throat, from
the pore throat into the connected pore body, and from the pore
body into the outflow throats. (b) The flow can cause the inter-
face to retreat through a volume AV =u At within a pore throat,
from the pore throat into the connected pore body, and from
the pore body into the outflow throats.

bilities for the new interface location, (ii) solving for the
new pressure field, (iii) determining the new volume flow
rates, and (iv) advancing the interface through
At=1/(2q,,) until breakthrough when the interface
reaches the edge of the porous medium. Our largest
models consist of 90X300=27 000 pore bodies; for these
largest systems, to reach breakthrough, we find that we
must cycle this process from as few as 700 times to as
many as 1400 times, depending on the viscosity ratio and
on the individual porous medium. The longest of these
runs use 21 h of computer CPU time on a floating-point-
system (FPS) vector array processor. To assure that our
time scale At=1/(2q.,,) was not too coarse, we also
performed some trial runs for Ar=1/(4q,,,). The re-
sults for this finer time scale were indistinguishable from
those for the more efficient, coarser time scale in that re-
sults for the moments were statistically indistinguishable
and the patterns appear similar.

III. FRACTAL BEHAVIOR AT INFINITE
VISCOSITY RATIO

Next, we will show that our modeling produces fractal
flow for a large viscosity ratio, enabling us to check the
predictions in Egs. (1). Using a viscosity ratio of 10000,
we ran our modeling program up to breakthrough for 17
different realizations of our model porous medium, all of
which were N, =300 pore bodies wide. Each of these
realizations was generated by starting with a different
seed for the random-number generator on our FPS
machine. Of these 17 different realizations, 11 were
N, =60 pore bodies long and 6 were N, =90 pore bodies
long. Figure 2 shows a typical, near-breakthrough pat-
tern for one of the 90X 300 porous media; this pattern
appears to be fractal, having fingers of many different
sizes and looking very much like the patterns from DLA
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FIG. 2. Near-breakthrough flow pattern showing the pore
bodies and throats occupied by injected fluid for a 90X 300
porous medium resulting from our simulations with a fluid
viscosity ratio M =10 000.

simulations [6]. We purposely chose to model the flow on
short-wide systems to avoid the pseudostable flow pro-
duced in long-narrow systems by the dominance of one
single finger. Furthermore, the 17 short-wide media pro-
vide statistics comparable to 75 square porous media (i.e.,
55 60X 60 media and 20 90X90 media) because both
have the same number of pore bodies.

During each of these runs, we have determined the
time (mass of injected fluid) and first moment {(x ) at
each time step. In order to verify that this large a viscosi-
ty ratio (M =10000) yields fractal flows in our model, we
have studied the dependence of (x) upon ¢. Figure 3
shows the log-log plot of {x)/t'* vs t. Our specific
definition of ¢ is proportional to the total volume of in-
jected fluid V,, (also proportional to the total mass)
through the relation

1=1.34(V,o/N,) . 6)

For this linear problem, where low-viscosity fluid is in-
jected into all the N, inlet pore bodies along the width,
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FIG. 3. Fractal behavior of the first moment (ie.,
(x)=Ct"*) from modeling large viscosity-ratio flows with
M =10000 on 17 different realizations of the porous medium.
The dots track the flow for individual realizations, while the
solid circles result from the data-smoothing procedure.
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the factor of N, in Eq. (6) accounts for the width depen-
dence of the injection rate, allowing us to compare sys-
tems of different widths used in some of the later simula-
tions. As discussed in the Appendix, the additive factor
of 1.3 can be understood as arising from the difference be-
tween our inherently discrete model and the more physi-
cal continuous systems. In any case, the effect of the fac-
tor of 1.3 is insignificant at later times, and serves only to
minimize early time curvature in Fig. 3. If the flow is a
DLA-like fractal, {(x ) /¢!* will be constant for all z. The
points track the results from runs on individual, porous-
media realizations. Finite-size effects seem negligible in
the near-breakthrough data, since results for the smaller
systems near breakthrough (near z=17, the 60X300
models reach breakthrough) are statistically indistin-
guishable from results for the larger systems (90X 300) in
their far-from-breakthrough regimes. This lack of finite-
size effects has been verified for all viscosity ratios, more
convincingly so for some of the other values where we
have simulations for a greater range of lengths and break-
through times. The solid circles show the results of a
data-smoothing procedure in which a quadratic least-
squares fit of all the data [y = In({x ) /t),x = Int] with
x = Int in the interval (Int; —1, Inz; + 1) gives the loca-
tion of the ith solid circle [({x ) /t);,¢;] and its standard
error. We then let In#; scan the full range of the data.
The standard errors are no bigger than the solid circles
used in Fig. 3. The first moment does, indeed, show frac-
tal scaling (x ) «<¢!4, which from Eq. (1) is consistent
with the DLA value of the fractal dimension D,~1.7.
To estimate our certainty in the value of 1.4, we plotted
(x)/t"*® and (x)/t"%; on the scale of Fig. 3, these
were clearly tilted from the horizontal. Therefore, we es-
timate

1+e=1/(D;—1)=1.4010.05,

indicating D,=1.7110.04; these results from our model
are in good agreement with the on-lattice DLA value of
the fractal dimension D,=1.70+£0.06 [12].

IV. IS VISCOUS FINGERING FRACTAL
FOR FINITE VISCOSITY RATIOS?

To study the nature of large-scale flows for a finite
viscosity ratio, we have modeled flows for smaller viscosi-
ty ratios: M =3, 10, 30, 100, and 300. For each viscosity
ratio, we have used a number of different realizations of
our model porous medium to improve statistics. Figure 4
shows the near-breakthrough flow pattern for three
different viscosity ratios; this figure demonstrates the pre-
viously observed tendency of large-viscosity-ratio flows to
appear fractal while small-viscosity-ratio flows are visibly
more compact [4]. To quantify the observed crossover
from fractal flow to compact flow as a function of viscosi-
ty ratio and time, we have determined the first moment of
saturation, (x ), and the time t=1.3+(V,,/N,), Eq. (5),
at each time step in the simulations. Performing these
simulations for a number of different realizations of the
model porous medium, we smoothed the resulting data,
as described in Sec. III, for each viscosity ratio. Figure 5
shows the smoothed data for {x )/t versus ¢ for all the
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viscosity ratios studied; as before, the standard errors are
no larger than the data points. As expected from above,
the data for M =10000 show fractal behavior with
(x )/t growing as t>*. For the smaller viscosity ratios,
the curves initially follow the fractal %4 dependence; but,
beginning with the M =3 data, they all break away from
the fractal behavior and approach a constant
{x )y /t=v(M), characteristic of compact (stable or
linear) flow. Furthermore, this breakaway or crossover
occurs on a characteristic time scale 7(M), which in-
creases with the viscosity ratio. In all cases, the flows fol-
low the fractal behavior, overshoot, and then relax back
to compact behavior. This intermediate, postovershoot
flow has a decreasing {x ) /¢, which indicates that, tem-
porarily, the front ({x )) is advancing more slowly than
linearly with time so that the flow is denser than com-
pact. This growth at short distance scales can be verified
by observing where the growth occurs during the inter-
mediate, postovershoot regime. Figure 6 shows typical
patterns for a viscosity ratio M =300 at two times during
the flow; the single pixels show occupation and the solid
squares show where significant (greater than 2%) growth
has occurred in the last few time steps. During the frac-
tal growth stage (¢ =~10), the growth occurs primarily at
the tips of the longest fingers, consistent with DLA
growth. In the denser-than-compact regime (t=40),
there is significant growth at small distance scales (the in-

Yiscosity Ratio = 10,000

form

f£or ™

form

FIG. 4. Near-breakthrough flow patterns show the locations
of pore bodies occupied by injected fluid for three different
viscosity ratios, M =10% 10%, and 10. Note the apparent cross-
over from fractal to compact flow as the viscosity ratio de-
creases.
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FIG. 5. Smoothed data for {x ) /¢ vs t showing the crossover
from initial fractal growth (¢%* behavior) to eventual compact
growth ({x )/t=v) with a characteristic time scale increasing
with viscosity ratio from M =3 (@) to M =10 (X)), 30 (0), 100
(+), and 300 (A), and eventually to M =10000 (M), where the
crossover has not yet begun.

terior of the pattern). At a late stage, when the growth is
compact, the growth sites would be distributed along the
interface. These observations can be made more quanti-
tative by considering the average position of the growth
sites:

(x)GEZde‘(;’t)/E dp((;”) , (7)

where p(r,t) is the occupation of the pore body or pore
throat at position r and time ¢. Since the total injected

FIG. 6. “Growth zone” for an M =300 flow pattern in a typ-
ical realization of a 90X 300 porous medium. The single pixels
show occupation and the solid squares locate recent, significant
growth. The bottom figure shows the pattern at ¢t =10 during
the fractal stage of growth when the growth is occurring pri-
marily at the fingertips; the top figure shows the growth at
t =40 during the overdense stage when growth is occurring at
small distance scales.
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mass is our definition of the time, t=3 p(r,t), the

denominator of Eq. (7) is identically 1. Therefore, {x )4

can be determined from the time derivative of (x ), i.e.,
dt  Yx)

(x >G=t27+2(X)

2.4{x) when {x)/t=t%*
= 12.0(x) when {x)/t=v . 8)

Thus, when {x )/t is constant (compact growth), the
growth sites are on the interface, at 2{x ); when {x ) /¢ is
increasing (fractal growth), the average position of the
growth sites is beyond the interface near the tips of the
longest fingers; however, when {x )/t is decreasing (in-
termediate, postovershoot growth), the average position
of the growth sites is behind the interface, as shown in
Fig. 6. Clearly, this denser-than-compact (“overdense’)
growth cannot be a long-term effect; however, it does
represent a real, short-term filling of the voids formed
during the fractal stage of growth. In any case, Fig. 5
shows a well-defined crossover from initial fractal growth
({x)/t=1t%%) to eventual compact growth ({x)/t=v)
for all relevant viscosity ratios.

To quantify this process, it is necessary to determine
the dependence of front velocity v and characteristic
crossover time 7 upon the viscosity ratio. We show that
the data scale, allowing a convincing characterization of
the viscosity-ratio dependence of 7 and v. In order to
determine a “scaling” variable which will collapse all the
data onto a single curve, consider the data for (x)/t'#
shown in Fig. 7. All the data start from a value 0.596 =
1/1.678, characteristic of the fractal dependence, and
eventually crossover to the compact behavior with a ¢ ~%4
dependence. One can obtain a crude collapse of the data
by plotting the data versus a “scaling” variable ¢ /M%%,
as shown in Fig. 8, where the characteristic time factor
MO0 shifts the large viscosity-ratio data onto the smaller
viscosity-ratio data. This estimate for the viscosity-ratio
dependence of the relaxation time, i.e., T=7oM 0.20, ap-
pears to provide convincing data collapse for large times
but not for the intermediate-time regime near ¢~ 10,
where there still remains a small viscosity-ratio-
dependent spread of approximately Az=5 in the data.
Applying a scaling correction which shifts the time origin
A=8/M""" enabled us to obtain a much more convinc-
ing data collapse with the ‘‘scaling” variable
u={t+A}/M"", as shown in Fig. 9. It should be noted
that the index characterizing the relaxation time changed
very little from the value in Fig. 8, i.e., from 0.20 to 0.17.
In estimating the reliability of this index, we found that,
including the shift, the value 0.20 is now clearly too 1ar§e
and that 0.14 is too small, so that we estimate r=7,M ',
¢, =0.17%0.03. Not surprisingly, there is less certainty
in the exponent associated with the scaling correction A
in that M3 is too strong a dependence and M%°! is too
weak a dependence. The essential point to retain from
this discussion is that the ‘scaling” variable
u={t+(a/M>3}/M i’ provides an excellent empirical
collapse of the data for the finite viscosity ratios M =3 to
300 with a value of the relaxation-time index
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FIG. 7. Plot of {x ) /t!* vs ¢ from the smoothed data for all
viscosity ratios, showing the crossover from initial fractal be-
havior (constant) to eventual compact behavior (¢ ~%* depen-
dence) on a characteristic time scale 7 increasing with viscosity
ratio [M =3 (@), 10 (X), 30 (0), 100 (+), 300 (A), and
10000 (m)].
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FIG. 8. Plot of {x)/t"* vs t/M%?° showing that a charac-
teristic time which increases with viscosity ratio as 7o« M%20
collapses the large-time data, with small deviations approxi-
mately At=5 around t=10. [M =3 (@), 10 (X)), 30 (0), 100
(+), 300 (A), and 10000 (W)].
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¢,=0.1710.03, so that
(x)/t*4=f(u),

9)
u={t+(8/M*")} /M7,

where f (u) is the function shown in Fig. 9. The value of
the shift exponent, =~ ¢,, and the actual form of the shift
have no effect on later results and only serve to improve
the data collapse. It seems likely that other forms for the
shift could provide a data collapse equally convincing,
but since the shift must be relatively small (A <10) given
the data, having a different shift effecting a significant
change in ¢, is impossible since that dependence is dom-
inated by long-time behavior.

The dependence of front velocity upon the viscosity ra-
tio can now be determined in a straightforward manner.
Since all flows become compact for a finite viscosity ratio
in the limit of large times, {x)/t—v(M). Obviously,
(x)/t' > (M)t ™€, where 1+€=1/(D,—1); with Eq
(9) this implies that f(u)—vou "¢, since u—t/M ‘
Note that v is a constant independent of the viscosity ra-
tio since, at least empirically from Fig. 9, all the
viscosity-ratio dependence is in u, not in the functional
form of f. Therefore,

(x)/t\Fe=f(u)—vou ~<=vo(M* /1), (10)
1.4
<X>/t
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FIG. 9. Scaling plot of {x)/t"* vs {t+8/M°*""}/MO"
showing that an M-dependent shift A~8/M%!” accommodates
the ¢ =~ 10 deviations observed in Fig. 7 with only a small change
in the power of the characteristic time; now 7 M%7 [M =3
(@), 10(X),30(0), 100 (+), 300 (A), and 10000 (M)].
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so that
(M) =veM ™

where €$,=0.0710-02, given the value €=0.40+0.05
and our determination of the relaxation-time exponent

-
V. GEOMETRICAL EFFECTS AND RADIAL FLOW

Our linear flow simulations show that the fractal flow
crosses over to compact flow on a characterlstlc time
scale which varies asymptotically as T~M Alterna-
tively, one could view the crossover as occurrmg when
the patterns have reached a characteristic size /=M il .
For linear flow, the characteristic crossover length varies
as

1/AD,~1) é,

1/(D,—1)
~(M !

) b

so that the length and time-based crossover indices are
related by ¢,=¢,/(D,—1). The values ¢,=0.17%0.03
and D,=1.71%0.06 predict that the characteristic cross-
over length I=M i’ should be characterized by the ex-
ponent ¢; =0.2410.06 for linear flow in two dimensions.
It remains an open question whether the characteristic
crossover time or crossover length is the more fundamen-
tal, i.e., which of the two (if either) would characterize
the fractal-to-compact crossover in another two-
dimensional flow geometry. In I we studied radial flow
(central injection) in two dimensions and observed
fractal-to-compact crossover, with a characterlstlc length
scale varying approximately as / ~m" , where ¢, ~ 1 [16].
In our analysis of the radial flow, the statistics were not
nearly as convincing as in the present study for linear
flow, and the data did not warrant inclusion of correc-
tions to scaling which slightly decreased the values of ¢,
in the linear case. Therefore, the uncertainties in our ra-
dial flow value of ¢, are large enough to admit equality of
this value of ¢,~3 for radial flow to the value
¢;=0.241£0.06 for linear flow. For this radial geometry,
the relation between characteristic length and time is
given by

I=x~=~t

1

J=R ~t /sz(Md)t)l/Df ,

so that ¢;=¢,/D - Therefore, for radial flow, the earlier
estimate ¢, =1 predicts that the time-based crossover ex-
ponent should equal ¢, =0.566. This value is nearly qua-
druple the time-based crossover exponent for linear flow,
supporting our conjecture that the length-based crossover
exponent ¢; =0.24+0.06, not the time-based crossover
exponent, is the same for all two-dimensional flow
geometries.

Do the radial flow data scale convincingly with a
characteristic time which varies asymptotically as
r=M? =M% where ¢,=¢,D;~=0. 408 Figure 10
shows the radial flow data, plotting R/t 7 versus t,
showing the fractal behavior (R =~t%%8%) at small times,
and the eventual crossover to compact (R =~t'/?)
behavior on a time scale which is increasing with viscosi-
ty ratio. Figure 11 shows the scaling of the data, now
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FIG. 10. Plot of (R ) /t%%% vs ¢ from the smoothed data for
central flow, showing the crossover from initial fractal behavior
(constant) to eventual compact behavior (¢ ~%%3 dependence) on
a characteristic time scale 7 increasing with viscosity ratio
[M =25 (X),50(0), 100 (+), and 10000 (M)].

plotting R/t'""7 versus (14+8)/M"* where the shift
A=1600/M Pr%t seems to provide the best collapse of the
data. Given the scatter in this data, the scaling is perfect-
ly reasonable, supporting our conjecture that the two-
dimensional fractal-to-compact crossover occurs on a
length scale which varies asymptotically as =M,
where ¢; =0.24+0.06.

VI. CONCLUSIONS

The effect of the viscosity ratio in changing the nature
of viscous fingering, where a less viscous fluid is used to
displace a more viscous fluid, was studied using a simple,
physical model of miscible, dispersionless, two-phase flow
in square-lattice, two-dimensional porous media. The ab-
sence of surface tension in this miscible two-phase flow
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FIG. 11. The scaling plot of (R)/t%% s
{t+1600/MO48} /Af%4%8 for central flow shows that assuming
the same length scaling as for linear flow adequately scales the
central flow data [M =25 (X), 50 (O), 100 (+), and
10000 (m)).
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placed the focus unambiguously on the effect of viscosity
ratio; the absence of dispersion at the interface avoided
the interfacial smoothing which would suppress small-
scale fluctuations. The resulting simulations have a num-
ber of advantages: (i) fluid is conserved to within a frac-
tion of a percent, (ii) decreasing the discrete time step in
the numerical integration of the motion of the fluids is
statistically insignificant (i.e., does not affect average
properties), (iii) the flows for a very large viscosity ratio
demonstrated the correct fractal behavior, (iv) the use of
a small aspect ratio (short, wide systems) avoids the
crossover to pseudostable flow observed in large-aspect-
ratio systems, and (v) the overlap of results from porous-
media realizations with different lengths shows that
finite-size effects were statistically insignificant in these
simulations.

Real-space renormalization-group (rsrg) approxima-
tions estimated that the crossover length should scale
linearly with M, i.e., ¢;=1 [22]; this result also follows
from the reasonable assumption that, for all viscosity ra-
tios, there is one flow velocity at the fingertips, while for
finite viscosity ratios there is also a second flow velocity,
elsewhere on the interface [23]. However, the quantita-
tive analysis of our flow simulations cannot be described
with a crossover length varying linearly with M, and the
qualitative change in behavior from the early-stage frac-
tal growth to the midstage growth at small distance
scales (Fig. 6) is not consistent with a smaller uniform
second flow along the interface. Therefore, quantitatively
and qualitatively our simulations are in striking disagree-
ment with earlier approximate treatments of this cross-
over.

For all viscosity ratios, the initial flows had an unsta-
ble, fractal character which crossed over (relaxed) to
stable, compact flow on a time (or length) scale which in-
creased with the viscosity ratio. Empirical scaling of the
data enabled an asymptotic characterization of the
viscosity-ratio dependence of (i) the charactenstlc length

scale for both linear and radial geometries / ~Mm" where
¢;=0.2410.06; (ii) the characteristic time scale, in linear
flow 7=M "', where ¢,=0.17£0.03 and ¢,=¢,(D,—1);
(iii) the linear flow front velocity v=M 1, where
¢,=0.17£0.03 and 1+e=1/(D;—1), so that
€$,=0.07+0.02; and (iv) the characteristic time scale for
radial flow, 7= M?*, where ¢, ~0.41 and ¢, =¢,D;.

In two dimensions, the crossover characterizing the re-
laxation from initial, unstable fractal flow to final, stable
flow shows a fractal overshoot and an intermediate, over-
dense regime during which the front advances more slow-
ly than linearly. That is, during the relaxation to stable
flow, there is a period of growth at the interior of the pat-
tern (i.e., small distance scales); throughout this over-
dense growth, some of the voids formed during the frac-
tal stage of growth are being filled in. The character of
this postovershoot, overdense growth was observed quali-
tatively from typical “growth-zone” patterns as well as
qualitatively from the average position of the growth
sites, (x ).

We are investigating a number of obvious extensions of
this work. What is the effect of mixing of the fluids on
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the crossover? How does the crossover behave in three
dimensions? Although the real “pore-throat” distribu-
tions are quite broad, all cross-sectional areas are not
equiprobable as we have assumed [24]. What is the effect
of more realistic pore-throat distributions?
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APPENDIX: DETERMINING THE EFFECTIVE
TIME: THE EFFECT OF LATTICE
DISCRETENESS UPON THE AVERAGE
INTERFACE POSITION

For a large (macroscopic) porous medium, one expects
that when even a few percent of available volume has
been occupied by the injected fluid, the discreteness of
the medium will not affect observations. In a continuum
model we can define the first moment of the mass of in-
jected fluid as

(x)=fL dex s

x=0 M,

(Ala)

where p(x) is the linear density profile from x =0—L
and where

L

t=m fx :Op(x)dx . (A1b)
However, in our discrete N, XN, square-lattice models of
length L, and width L,, one does not have a continuous
density profile, but rather one has an occupation for each
row of lattice sites, i.e., p(i) for the ith row, i =1—N,.

Therefore, the first moment will be given by the sum

Mool
<x>: Zia‘&- R

i=1 Mot

(A2a)

where the rows of the lattice are a distance a =L, /N,
apart and where

NX
My = > pli) .

i=1

(A2b)

At this point, we will choose our length scale so that
a =1, which makes both sums and integrals dimension-
less and which enables us to treat the integrand and sum-
mand interchangeably, i.e., p(i)=p(x =i). For a very
large system (L >>1), the discreteness of our model is
unobservable on a scale of the system size, and the sums
in Egs. (A2) approach the integrals in Egs. (Al) in the
usual way.

However, for small values of {x ), the discreteness of
our lattice model does affect the relationship between
(x) and t =m,,,. Fortunately, quantifying this effect for
compact (nonfractal) flow enables us to define an effective
time which minimizes these small {(x) deviations. To
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understand the genesis of this effective time, we first con-
sider the difference between the sums [Egs. (A2)] and the
integrals [Eqgs. (A1)]. For a typical function, the integral

A= [" flodx (A3)
¢ x =0

is equal to the area, 4., under the continuous curve f (x),
while the sum

10
Ap=3S fU)=f()+fQ2)+f3)+ - +£(9)+f(10)

i=1
(A4)

is equal to the area, A, under the stepwise ‘“‘histogram.”
Clearly, the integral would be better approximated by a
trapezoidal estimate than by the sum in Eq. (A4), that is,

A =L O+ FD)]FHL LD+ £+ (2)+£(3)]
HFB)+Hf@)]+ - +LF(8)+£(9)]

+
+1[£(9)+£(10)] . (AS)

Graphically, the difference between the estimates in Egs.
(A5) and (A4) (between the value of the sum and the tra-
pezoidal estimate) is equal to the area of the triangular
portions above the f(x) minus the area of the triangular
portions below the f(x). Algebraically, this is simply Eq.
(A4) minus Eq. (AS):

Ap— A, =1 f(10)—f(0)] .

The form of effective mass which minimizes discrete-
ness effects is most easily derived for pistonlike displace-
ment (flat interface where {(x)=1¢). Consider the pis-
tonlike motion of a flat interface through i=/; for our
N, XN, rectangular lattice, the occupation of a row of
pores bodies is N, for all rows through the flat interface
between i =/ and /+1. For this case, the mass is the
same in both the continuum [m, .= 4., Eq. (A1b)] and
discrete [m, p = Ap, Eq. (A2b)] cases, being the area of
a rectangle of height N, and base J,

(A6)

(A7)

since the difference in Eq. (A6) is zero [here, f(I)=f(0)].
However, the results for the moment {x ) differ. From
the integral which evaluates the area of a triangle of
height /N, and base /, we have

1

2

Miot,e = Mio, D =lNy ’

1

tot

(x),=——(N,)

2

I ] . (A8)

Equation (A6) shows us that the sum will give the result

! {(uvy)

tot

I*1
2 b

(x)p= %

+%[(1Ny)—0]]

(A9)

where the first term in the curly braces results from the
integral in Eq. (A8) and the second term results from the
excess of Eq. (A6). Therefore, the linear behavior of Eq.
(A8) resulting from a continuum model
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I 1 Mot
= |L |=2 ot A10
(x), 5 2 N, (A10)
is mimicked for the discrete model
I1+1 1 | Mot
=|—|=={—+1 All
(x >D ) 2 [ Ny ] ( )
if one uses

meﬁ"Eteﬁ'Ny Erntot,D.*-va

as an effective-mass variable in the discrete model. This
defines effective time used in the analysis of the moments.

Surprisingly, it is possible to verify that this same
effective saturation applies for general compact (nonfrac-
tal) flow. In this case, where one can write
p(x,t)=p(x /t) because {x ) =vt, evaluating the integrals
[Egs. (A1)] for total mass and first moment both yield re-
sults proportional to ¢:

My =aN,t , (A12)
(x)c=bt , (A13)
so that the first moment is proportional to total mass
b Moty €
=02 v Al4
(x), a N, (A14)

If one has a smooth occupation-density profile p(x /t)
varying from p(0)=N, to p(x /t)=0 for x /t Zv,,,,, Eq.
(A6) shows that the discrete evaluation of the total mass
is given by

Mg p =My .+ +(0—N,)=aN,t—iN, ,

(A15)

while the discrete evaluation of the un-normalized mo-
ment gives the same result as the integral:

Mo, p XY p=my (x),+10—0)=(aN,1)(bt),
(A16)

since the integrand xp(x) is zero at both limits of integra-
tion. Using Eq. (A15) to replace (aN,t) by m p+ 3N,
in Eq. (A 16), one finds

b (mypt+aN, )? b
(x)p= ~

aNn, Mot p aNn,

{mtot,D+Ny} ’

(A17)

where we neglect the quadratic term {4N, }2/m o p be-
cause it is of order 7 !, whereas the two terms retained
are of order 7! and t°. In Eq. (A17), note that this is
simply our definition of effective mass:

_ | Mor,D
te«=l———];y +1], (A18)
so that
(x >C=§teﬁ . (A19)

This provides a first-order correction to the difference
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between continuous and discrete determinations. There-
fore, use of the effective saturation (or effective time) en-
ables us to reduce the small time and distance effects of
discreteness upon the relation between the first moment
and the mass.

If the mass pattern is fractal, one can proceed in a
similar fashion, realizing that the equation for the first
moment from the continuous evaluation becomes in Eq.
(A13),

<x>c=bt1+e ,

while the equation for the total mass in Eq. (A12) as well
as the relations between the discrete and continuous eval-
uations, Egs. (A15) and (A16) remain unchanged. Re-
placing the (bt) by (bz!1€) in Eq. (A16) and using Eq.
(A15) to replace (aN,t) by m p+ 3N, one finds

b (mig,p+iN,P"e

aNy Miot,D

(x)p= (A20)
Assuming that f4=(m,, p/N,)+c, one can determine
the constant ¢ by requiring that the correction to first or-
der in 1/t vanish, that is, using this definition of 7. in
Eq. (A20), one finds

BNF (tg—c+1)Te

(x)p= P
€l
bN€ (1=t (c—1))2te
= gt 2 : (A21)
1—tgc

Expanding in powers of ¢ ¢, we find
€

bN,
ay g {l+eg [—(2+e)c—

(x)Dz )+C]

1
2
+0(t )} . (A22)

Requiring that the coefficient of ¢.5' be zero determines
the value of ¢, in ¢4

Stot, D 1 2+4e€
tg=—o—+ o . A23
‘TN, 2 l+e (A23)

Therefore, use of this effective time in a discrete model
accounts for the difference between sums and integrals
through first order in .

For the model discussed in this paper, there are N,
throats parallel to the x axis at x =2m + 1, containing a
total volume %Ny, as well as pore bodies and throats
parallel to the y axis at x =2m, containing a total volume
4N,. When one reproduces the pistonlike discussion for
this model, one finds for compact flow,

teﬁ=mmt,D/Ny+1.5 N
whereas for fractal flow, where €=0.4,
teg=Mm p/N,+1.3.

The latter definition with the additive factor of 1.3 was
used in the analysis of Secs. II and III and does reduce
the early time curvature due to the difference between
discrete and continuous models.
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